
[Appendix] Panoramic Vision Transformer for
Saliency Detection in 360◦ Videos

Heeseung Yun, Sehun Lee, and Gunhee Kim

Seoul National University, Seoul, Korea

In the appendix, we provide details on our Panoramic Vision Transformer
(PAVER) framework, implementation details of our model and the baselines,
and additional experimental results deferred from the main paper.

A Details on Panoramic Vision Transformer

A.1 Vision Transformers

A detailed explanation of the transformer encoder in Eq. 4 is as follows. The
transformer encoder consists of L layers of transformer blocks, where each block
is composed of a multi-head self-attention module (MHSA) and a position-wise
feed-forward network (FFN) with layer normalization [1] and residual connection
for i = 0, ..., L− 1:

x′
0 = p0 +PE, (13)

x′
i = LayerNorm(MHSA(xi) + xi), (14)

xi+1 = LayerNorm(FFN(x′
i) + x′

i), (15)

where pi,xi,x
′
i ∈ R(N+1)×C for layer i and PE denotes position encoding. Since

our input resolution is not the same as the one used in the original vision trans-
former, we follow the approach in [5] and resize PE with bicubic interpolation.

Multi-Head Self-Attention. MHSA first generates a set of query Q, key
K, and value V with the corresponding projection from X and processes scaled
dot-product attention with multiple heads [12]. The equation is given by

Attn(Q,K, V) = Softmax

(
QKT

√
dk

)
V, (16)

headi(X) = Attention(XWQ
i , XWK

i , XWV
i), (17)

MHSA(X) = Concat(head1, . . . ,headh)W
O, (18)

where WQ
i ,WK

i ∈ RC×dk ,WV
i ∈ RC×dk ,WO ∈ Rhdv×C and dk = dv = C/h.

Position-wise Feed-Forward Network.After the multi-head self-attention
module, each transformer block is connected with a fully connected feed-forward
network made up of two linear layers with GELU [8] activation:

FFN(X) = GELU(XW1 + b1)W2 + b2. (19)

2 H. Yun et al.

(a) No offset (b) Learnable offset (c) Fixed offset

(𝜙 = −30°)
(d) Fixed offset

(𝜙 = 60°)

Fig. 5: Intuition of the deformable convolution in PAVER.

A.2 Deformable Convolution

Motivation of Deformable Convolution in PAVER. The deformable con-
volution additionally introduces learnable offsets to the normal convolution to
allow freeform kernels with marginal overhead. Fig. 5 visualizes this intuition.
We fix the offset with respect to the underlying spherical geometry and load
kernel weights from any pretrained models.

Derivation of Geometric Offset for DeformConv. We elaborate the
derivation process of geometric offset for DeformConv in equirectangular format.
As discussed in Eq. 1–3, we first set up the reference patch P ∈ RS×S×3, i.e.,
P = {(π

28 ,
π
28 , 1), (

S−2
S−1

π
14−

π
28 ,

π
28 , 1), ..., (−

π
28 ,−

π
28 , 1)}. This is equivalent to S×S

points sampled from bounded plane z = 1 such that (x, y) ∈ R(− π
28 ,

π
28)×(− π

28 ,
π
28).

P×R(θi, ϕi) in Eq. 2 rotates the points in P by (θi, ϕi) and normalizes each point
to have a length of 1, which moves all the points onto the surface of the sphere.
Then we convert the points from cartesian to spherical coordinates (f3D→Sph)
and from spherical coordinates to 2D equirectangular coordinates (fSph→ER):

f3D→Sph(x, y, z) = (arctan
y

x
, arctan

√
x2 + y2

z
), (20)

fSph→ER(θ, ϕ) = (
W

2π
ϕ,

H

π
θ). (21)

Throughout this process, we obtain ΘDC-offset ∈ R2×S×S×h×w, i.e., S × S 2D
points for all h× w patches.

A.3 Geometric Offsets for Various Video Formats

Using the geometric offsets for equirectangular format obtained in Sec. A.2, we
compute the geometric offsets for other 360◦ video formats like cubemap pro-
jection (RCMP) and truncated square pyramid projection (TSP). To achieve
this, we leverage an open source 360◦ format conversion tool1 to transform the
offsets. We first generate S × S × h × w images with one pixel marked, which
corresponds to each offset point in ΘDC-offset. Then we convert these images from
the equirectangular format to the target format using the conversion tool. Fi-
nally, we collect the coordinates of marked pixels, which constitute the geometric
offsets for the target 360◦ video format.

1 https://github.com/Samsung/360tools

Panoramic Vision Transformer 3

B Implementation Details

B.1 Details on Experiment Setting

We further report the details of the experiments in our paper. Some variants of
PAVER require larger learning rates or longer training epochs for convergence.
To be specific, we use two times longer training time for PAVER (NoGlobal)
and PAVER (NoDecoupled) in Table 1, five times larger learning rate for DINO
backbone in Table 2-(b), and both for time-only saliency score in Table 2-(a).

For baseline models using the vision transformer as a backbone, we run
experiments with different pretrained weights and report the best performing
configuration. We use DINO with ViT-B/8 [3] as weights for experiments with
DINO [3], LOST [10], and TokenCut [13] in Table 1, as the original ViT-B/16 [5]
was detrimental to the performance. For TS-CAM [7], we use maximum class
activation maps for generating saliency maps as in CubePad [4] due to lack of
supervision.

B.2 Details on Video Quality Assessment

As explained in Sec. 4.1, we compute PSNR, S-PSNR [14] and WS-PSNR [11]
with saliency map wSAL(p) as weights:

PSNRSAL = 10 log
Y 2
max ·

∑
p∈P w

SAL(p)∑
p∈P(Y (p)− Y ′(p))2 · wSAL(p)

, (22)

WS-PSNRSAL = 10 log
Y 2
max ·

∑
p∈P w

SAL(p) cos θp∑
p∈P(Y (p)− Y ′(p))2 · wSAL(p) cos θp

, (23)

S-PSNRSAL = 10 log
Y 2
max ·

∑
p∈sph(P) w

SAL(p)∑
p∈sph(P)(Y (p)− Y ′(p))2 · wSAL(p)

, (24)

where Ymax denotes maximum intensity value of the video, Y (p) and Y ′(p)
indicate intensities of pixel p in the reference and impaired omnidirectional video
frames, and θp is the latitude of pixel p. P and sph(P) indicate points sampled
from equirectangular plane and sphere, respectively.

B.3 Computation Environment

– GPU: NVIDIA TITAN X/Xp
– CPU: Intel(R) Xeon(R) Gold 6130 CPU
– OS: Ubuntu 16.04 LTS
– RAM: SAMSUNG DDR4 8G
– Relevant software libraries: Anaconda distribution of python (≈ 3.7) and

PyTorch (≈ 1.9)

Please refer to our source code for more details.

4 H. Yun et al.

(a) 𝜆𝑇 (b) 𝜆𝑆 (c) 𝜆𝐺 (d) Epochs
5 10 20 40

▬ Original ▬ 𝜆𝑇
×2 ⋅⋅⋅⋅ 𝜆𝑇

×0.5 ▬ 𝜆𝑆
×5 ⋅⋅⋅⋅ 𝜆𝑆

×0.2 ▬ 𝜆𝐺
×5 ⋅⋅⋅⋅ 𝜆𝐺

×0.2 ▬ [47]

0.63

0.60

0.52

0.49
0.1 0.5 2.5 12.5

1.0

0.9

0.8

0.7

0.6

0.5

▬ CC ▬AUC-B ▬AUC-J

0 20

CC

0.02 0.1 0.5 2.5

Fig. 6: Performance of PAVER under different hyperparameter values and train-
ing schedule.

(a) Number of frames (b) Local context encoder

0.61

0.62

0.63

0.64

0 5 10 15 20 25

0.61

0.612

0.614

0.616

0.618

0.62

Time-only Space-only Factorized Ours

Fig. 7: Influence of video length and local context fusion module on Wild360 test
split. Y axis indicates linear correlation coefficient (CC).

C Additional Experiments

C.1 Influence of Hyperparameters

The selection of hyperparameters is important in unsupervised scenarios. We in-
vestigate the influence of hyperparameters in terms of losses and training sched-
ules. Fig. 6-(a–c) visualizes the performance of our PAVER under a varying
set of hyperparameters. The performance gap between different hyperparameter
values is no more than 1%p unless the value gets dramatically larger or smaller.
Still, the performance of PAVER is consistently better than the state-of-the-art
method (i.e., [13]) in this range. That is, our approach is not sensitive to changes
in hyperparameters.

Fig. 6-(d) reports the performance of all checkpoints for a prolonged train-
ing schedule. After maxing out, the performance gradually declines instead of
converging to a certain point. This mostly has to do with the temporal and spa-
tial consistency loss. The two losses cause the saliency map to gradually diffuse,
which is slightly detrimental to performance. Therefore, we refer to the conver-
gence of the saliency map update ratio per epoch during training and use fixed
epochs to measure the performance, which is in line with other works [3–5].

Panoramic Vision Transformer 5

(a) Distance computation (b) Geometric error (c) Latency

0.7321 0.7321

0.0126 0.0031
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5.025

19.52

0.2625 0.1861
0
2
4
6
8

10
12
14
16
18
20

(ms)
𝑃𝑖

𝑄𝑖

1 + 2tan2
𝜃

2
− 1

𝜃/2

1

Fig. 8: Geometric error and latency analysis.

C.2 Analysis on Video Length and Temporal Modeling

Fig. 7-(a) summarizes the influence of video length in the Wild360 dataset.
Although we use T = 5 frames for a fair comparison with the previous state-
of-the-art model [4], using longer videos as input is beneficial for performance.
For instance, if we use 25 frames at once as input, linear correlation coefficient
performance boosts by 1.7%p, which implies that providing a longer temporal
context is beneficial for saliency prediction on 360◦ videos.

Fig. 7-(b) reports the influence of the local context encoder, which compares
our spatiotemporal fusion module against time-only attention, space-only atten-
tion, and factorized attention used in [2]. As discussed, both space attention and
time attention contribute to the full model’s performance, while stacking one
after another as in factorized attention slightly reduces the performance.

C.3 Analysis on Latency and Geometric Error

Fig. 8 reports latency and geometric error of PAVER compared to general NFoV
counterparts. For NFoV models, we use the NFoV models with six projections
(e.g., CubePad [4]) and 24 projections as general configuration. We also analyze
the performance of PAVER with a patch size of S = 8 and S = 16. We only
take into account the latency and geometric error incurred from the geometric
projection module instead of the full model for a fair comparison.

Fig. 8-(a,b) summarizes the maximum geometric error induced by tangential
projection assuming a unit sphere (i.e., a sphere with radius 1). As investigated
in [6], even subtle radial distortion in an input image incurs a significant drop in
performance. In order to process omnidirectional inputs with a set of projected
patches below a certain error bound, a geometric error between the original
sphere and projected patches should be defined beforehand. We use the Hausdorff
distance [9] to measure this value, which is one of the standard distance metrics
between two arbitrary surfaces. Hausdorff distance computes the greatest of all
the distances from a point on the source surface to the closest point on the target
surface. For a set of projected patches P = {Pi}Ni=1 and its corresponding sphere
segment Q = {Qi}Ni=1, the Hausdorff distance h(P,Q) is derived as follows:

6 H. Yun et al.

h(P,Q) = max
i∈{1,...,N}

h(Pi, Qi)

= max
p∈Pi

min
q∈Qi

||p− q||

= max
p∈Pi

min
q∈Qi

||(p−O)− (q −O)||

= max
p∈Pi

||p−O|| − 1

=

√
1 + 2 tan2

θ

2
− 1, (25)

where θ denotes the angular distance of patch Pi and O denotes the center of
the sphere.

Since NFoV models project the unit sphere onto a circumscribed cube, the
geometric error induced from projection is

√
3 − 1 ≈ 7.321 × 10−1 per NFoV

projection. On the other hand, our model displays a maximum geometric error of√
1 + 2 tan2 π

28 −1 ≈ 1.262×10−2 for patch length S = 16 and
√
1 + 2 tan2 π

56 −
1 ≈ 3.149×10−3 for patch length S = 8, which is an order of magnitude smaller.

Fig. 8-(c) summarizes the time required to process 360◦ input, where we re-
port the average latency per input for processing 1,000 random inputs, averaging
five independent runs. To be specific, we compare the time required to project
NFoV images against the relative overhead incurred by deformation in Deform-
Conv with respect to general convolution operation with a batch size of 1. For
NFoV projection, we use the implementation of [4]. Our approach takes consid-
erably less time to process 360◦ inputs compared to conventional NFoV-based
approaches, without the need for explicitly saving projected patches.

C.4 More Qualitative Examples

Fig. 9 visualizes more qualitative examples of saliency prediction results from
PAVER. Our approach can discern the relative importance of varying foreground
objects while maintaining temporally consistent saliency maps.

Panoramic Vision Transformer 7

Ours

GT

Frame

Ours

GT

Frame

Ours

GT

Frame

Ours

GT

Frame

Fig. 9: Qualitative examples of 360◦ video saliency prediction by PAVER.

8 H. Yun et al.

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv:1607.06450 (2016)
2. Bertasius, G., Wang, H., Torresani, L.: Is Space-Time Attention All You Need for

Video Understanding? In: ICML (2021)
3. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,

A.: Emerging Properties in Self-Supervised Vision Transformers. In: ICCV (2021)
4. Cheng, H.T., Chao, C.H., Dong, J.D., Wen, H.K., Liu, T.L., Sun, M.: Cube padding

for weakly-supervised saliency prediction in 360 videos. In: CVPR (2018)
5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,

T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020)

6. Eder, M., Shvets, M., Lim, J., Frahm, J.M.: Tangent images for mitigating spherical
distortion. In: CVPR (2020)

7. Gao, W., Wan, F., Pan, X., Peng, Z., Tian, Q., Han, Z., Zhou, B., Ts-cam, Q.Y.:
Token Semantic Coupled Attention Map for Weakly Supervised Object Localiza-
tion. In: ICCV (2021)

8. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs).
arXiv:1606.08415 (2016)

9. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer Science &
Business Media (2009)

10. Siméoni, O., Puy, G., Vo, H.V., Roburin, S., Gidaris, S., Bursuc, A., Pérez, P.,
Marlet, R., Ponce, J.: Localizing Objects with Self-Supervised Transformers and
no Labels. In: BMVC (2021)

11. Sun, Y., Lu, A., Yu, L.: Weighted-to-spherically-uniform quality evaluation for
omnidirectional video. SPL (2017)

12. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: NIPS (2017)

13. Wang, Y., Shen, X., Hu, S., Yuan, Y., Crowley, J., Vaufreydaz, D.: Self-Supervised
Transformers for Unsupervised Object Discovery using Normalized Cut. In: CVPR
(2022)

14. Yu, M., Lakshman, H., Girod, B.: A framework to evaluate omnidirectional video
coding schemes. In: ISMAR (2015)

